Apa Saja Algoritma Decision Tree?
Ada beberapa algoritma yang sering digunakan dalam membangun decision tree, diantaranya adalah:
Multidimensional Array
Salah satu fitur menarik dari NumPy adalah library ini mampu membuat multidimensional array dan melakukan manipulasi array dengan mudah dan cepat. Multidimensional array adalah array yang berbentuk lebih dari 1 dimensi seperti 2D, 3D, 4D dan seterusnya. Cara membuat multidimensional array sama dengan membuat array 1 dimensi, perbedaannya hanya pada parameter yang digunakannya saja. Berikut ini adalah contohnya membuat array 2 dimensi:
Array diatas adalah berbentuk (2,5) artinya mempunyai 2 baris dan 5 kolom. Kita bisa melihat jumlah elemen di setiap dimensi dengan menggunakan fungsi shape.
3. Operasi Aritmatika
Operator aritmatika adalah operator yang biasa ditemukan untuk operasi matematika. Aritmatika sendiri merupakan cabang ilmu matematika yang membahas perhitungan sederhana, seperti kali, bagi, tambah dan kurang (kabataku). Kita bisa menggunakan operasi aritmatika seperti penjumlahan, pengurangan, perkalian, pembagian dan perpangkatan. Operator yang digunakan adalah +, -, *, / dan **
Berikut contoh operasi aritmatika pada array,
Baca juga : Belajar Data Science: Pahami Penggunaan Machine Learning pada Python
Algoritma dalam Python
Beberapa jenis algoritma pada python adalah algoritma pencarian (searching algorithm), algoritma grafik (graph algorithm), dan algoritma analisis (analyst algorithm). Algoritma pencarian membantu dalam memeriksa dan mengambil elemen dari struktur data yang berbeda. Ada dua tipe algoritma pencarian, yaitu algoritma pencarian linier dan biner. Dalam algoritma pencarian linier, setiap item dicari secara berurutan satu persatu sedangkan dalam algoritma pencarian biner, interval pencarian berulang kali dibagi menjadi dua. Jika elemen yang akan dicari lebih rendah dari komponen pusat interval, maka interval akan dipersempit ke bagian bawah atau ke atas. Proses ini akan dilakukan berulang-ulang hingga nilainya ditemukan. Dalam algoritma grafik (graph algorithm) ada dua metode, yaitu depth-first traversal (DFS) dan breadth-first transversal (BFS). Pada algoritma DFS grafik melintas dalam gerakan yang semakin ke dalam. Algoritma ini diimplementasikan dengan python menggunakan tipe dataset. Dalam algoritma BFS sebuah grafik melintas dengan gerakan melebar. Algoritma ini diimplementasikan pada python dengan menggunakan struktur data list. Dalam algoritma analisis (analyst algorithm) ada dua algoritma, yaitu algoritma analisis apriori dan algoritma analisis posterior. Algoritma analisis apriori merupakan analisis teoritis dari algoritma sebelum diimplementasikan. Algoritma analisis posterior mengacu pada analisis empiris dari algoritma setelah diterapkan dan menggunakan bahasa pemrograman untuk mengimplementasikan algoritma yang dipilih serta dieksekusi dengan komputer.
Baca juga : Belajar Data Science: Pahami Penggunaan Machine Learning pada Python
Gunakan Kode Voucher "DQTRIAL", dan simak informasi di bawah ini mendapatkan 30 Hari FREE TRIAL:
ID3 (Iterative Dichotomiser 3)
ID3 merupakan algoritma yang pertama kali diperkenalkan oleh Ross Quinlan pada tahun 1979. Algoritma ini menggunakan entropy dan information gain untuk memutuskan atribut apa yang harus dipilih sebagai root node pada decision tree.
C4.5 adalah sebuah algoritma pembelajaran mesin yang digunakan untuk membangun model prediksi berdasarkan data yang tersedia. Algoritma ini termasuk dalam kelas algoritma decision tree, yang berarti bahwa ia membuat keputusan berdasarkan serangkaian pertanyaan yang terstruktur dalam bentuk pohon keputusan. C4.5 diperkenalkan oleh J. Ross Quinlan pada tahun 1993 dan merupakan evolusi dari algoritma ID3 (Iterative Dichotomiser 3) yang lebih lama.
C4.5 memiliki beberapa keunggulan dibandingkan algoritma decision tree lainnya, seperti kemampuan untuk menangani data numerik dan data kategorik serta kemampuan untuk mempertahankan akurasi model meskipun terjadi perubahan pada data. Algoritma ini sering digunakan dalam aplikasi machine learning untuk memprediksi keputusan atau klasifikasi suatu data berdasarkan fitur-fitur yang ada.
C5.0 adalah versi yang lebih modern dari C4.5 yang memiliki performa yang lebih baik. C5.0 diperkenalkan oleh J. Ross Quinlan pada tahun 2000 dan memiliki beberapa keunggulan dibandingkan algoritma C4.5, seperti kemampuan untuk menangani data dengan lebih baik dan menghasilkan model yang lebih sederhana dan mudah dipahami. Algoritma ini sering digunakan dalam aplikasi machine learning untuk memprediksi keputusan atau klasifikasi suatu data berdasarkan fitur-fitur yang ada.
Aplikasi yang menggunakan Python
Python bisa dioperasikan di berbagai platform seperti Windows, Mac, Linux, dan Raspberry Pi. Ada banyak sekali aplikasi yang dibuat menggunakan Python. Angkanya juga akan terus bertambah mengingat sampai kini Python masih menjadi favorit.
Dalam dunia web development, frameworks terkenal seperti Flask, Pyramid, dan Django dibuat dengan andil peran Python. Sementara di industri gaming, Python juga cukup dikenal. Lihat saja game seperti Vega Strike, Battlefield 2, Eve Online, dan Flappy Bird yang dibuat menggunakan Python.
Selain itu, aplikasi sejuta umat seperti Spotify, Pinterest, dan Uber juga menggunakan Python. Ketiga perusahaan ini mengandalkan Python untuk mengirimkan push notifications, menyusun algoritma untuk rekomendasi konten, dan juga framework website. Aplikasi media sosial seperti Facebook, Instagram, dan Reddit juga tidak ketinggalan menggunakan Python.
Selama 30 tahun, Python sudah digunakan untuk menciptakan ribuan software, aplikasi, dan website. Sebagai bahasa pemrograman favorit, Python memiliki banyak kegunaan. Bahasa pemrograman ini digunakan untuk berbagai kepentingan, mulai dari pembuatan game offline dan online, maintenance website, machine learning, sampai aplikasi media sosial. Menjawab apa itu Python, inovasi yang satu ini adalah alat yang sudah membantu memajukan teknologi global.
Ingin belajar lebih banyak tentang bahasa pemrograman? Masih belum terlambat untuk mengasah keterampilan Anda. Ikuti kelas-kelas data science di Algoritma Data Science School yang dipandu oleh experts dan instruktur yang sudah berlisensi resmi. Algoritma menawarkan kurikulum komprehensif yang bisa membantu Anda mengembangkan skill profesional.
Buku ini merupakan buku ajar Algoritma Pemrograman yang didalamnya terkandung pelajaran mengenai dasar-dasar pemrograman komputer. Bahasa pemrograman Python digunakan karena bahasa ini sangat populer dan menjadi salah satu bahasa pemrograman terbaik untuk belajar. Besar harapan buku ini dapat menjadi teman belajar mahasiswa sehingga dapat menguasai dasar-dasar pemrograman komputer. Buku ini dimulai dari pengantar Algoritma yang disertai dengan materi penunjang yaitu perangkat lunak flowgorithm. Selanjutnya, pengguna buku ini akan diperkenalkan pada struktur Algoritma yang nantinya digunakan sebagai dasar terkait implementasinya pada Bahasa pemrograman Python. Sehingga selain teori, pengguna buku juga dapat langsung mempraktikkannya. Materi lain pada buku ini mencakup Bahasa pemrograman Python, komponen dasar pemrograman, Percabangan, Pengulangan, Array, List, Tuple, Dictionary serta subrutin baik menggunakan prosedur maupun fungsi.
Algoritma Python merupakan bahasa pemrograman yang sangat populer. Bahasa pemrograman ini dibuat oleh Guido van Rossum dan dikenalkan sejak tahun 1991. Jika kamu tertarik mempelajari Python, sebaiknya kamu harus memahami dulu apa itu Python dan bagaimana kerjanya. Beberapa hal yang dapat dilakukan oleh Python seperti, membangun server ketika ingin membuat website, atau ketika kamu ingin membaca dan memodifikasi sebuah dataset di dalam sebuah pembangunan sistem database, dan atau Python dapat digunakan saat mengolah big data dan menjalankan algoritma matematika yang cukup kompleks.
Pada artikel ini, agar lebih mengenal Python DQLab akan berbagi pengetahuan mengenai bagaimana menggunakan Numpy untuk memanipulasi Array pada Python. Secara spesifik, pada artikel ini akan dijelaskan tutorial dasar yang dapat sahabat data sekalian terapkan menggunakan Numpy pada array. Dengan memahami metode numpy array tersebut, sahabat data akan memiliki dasar yang lebih baik dalam melakukan data processing kedepannya. Penasaran apa saja sebenarnya yang dapat dilakukan Python dengan metode-metode tersebut? Yuk simak penjelasan berikut!
CHAID (Chi-squared Automatic Interaction Detection)
CHAID adalah algoritma yang menggunakan uji chi-square untuk memutuskan atribut apa yang harus dipilih sebagai root node pada decision tree. Algoritma ini biasanya digunakan untuk data kategorikal. CHAID memiliki kemampuan untuk menangani data kategorik dan menemukan interaksi antar fitur dalam data yang mempengaruhi target yang ingin diprediksi. Algoritma ini sering digunakan dalam aplikasi machine learning untuk memprediksi keputusan atau klasifikasi suatu data berdasarkan fitur-fitur yang ada.
Perbedaan Utama SQL dan Python
Perbedaan SQL dan Python yang paling signifikan adalah SQL digunakan oleh developer untuk mengakses dan mengekstrak data dari database. Python sendiri digunakan untuk menganalisis dan memanipulasi data dengan menjalankan tes regresi, tes deret waktu (time-series test), dan bentuk penghitungan data lainnya.
SQL adalah bahasa pemrograman yang sederhana dan memiliki ragam fungsi yang lebih sempit dibandingkan dengan Python. Dengan pustakanya yang besar, kode Python bisa diintegrasikan dengan banyak aplikasi lain. Python adalah bahasa pemrograman fleksibel dengan banyak fitur yang membuatnya disukai dan bisa dipelajari oleh nondeveloper sekaligus.
Baru-baru ini, sebuah survei dari Statista menunjukkan bahwa empat database management system paling populer di dunia adalah Oracle, MySQL, Microsoft SQL Server, dan PostgreSQL. Keempat sistem ini memiliki dasar SQL yang menunjukkan bahwa siapapun yang ingin menjadi seorang profesional di dunia data science akan mendapatkan keuntungan jika memahami SQL.
Mengenal NumPy Array
NumPy merupakan salah satu library terpenting dalam bahasa pemrograman python. Fungsi NumPy array mirip dengan manipulasi data pada python. Beberapa manipulasi array dasar adalah atribut array, pengindeksan array, pembentukan baris, dan penggabungan-pemisahan array. Manipulasi array yang biasanya banyak digunakan adalah menggabungkan beberapa array menjadi satu atau memisahkan satu array menjadi beberapa bagian.
Langkah pertama saat ingin menggunakan library numpy adalah melakukan import dengan menggunakan coding library numpy as np. Penggunaan as disini, artinya kita menggantikan pemanggilan numpy dengan prefix np untuk proses berikutnya.
Untuk melakukan pengecekan tipe pada array menggunakan fungsi type() seperti gambar di bawah ini
Array df memiliki tipe data int32 dan int64 yang keduanya sama-sama bertipekan integer. Perbedaan keduanya pada kapasitas penyimpanan data.
Baca juga : 3 Jenis Algoritma Machine Learning yang Dapat Digunakan di Dunia Perbankan
Yuk Mulai Belajar Menjadi Data Scientist Bersama DQLab!
Gunakan Kode Voucher "DQTRIAL", dan simak informasi di bawah ini mendapatkan 30 Hari FREE TRIAL:
Buat Akun Gratis dengan Signup di DQLab.id/signup
Buka academy.dqlab.id dan pilih menu redeem voucher
Redeem voucher "DQTRIAL" dan check menu my profile untuk melihat masa subscription yang sudah terakumulasi.
Selamat, akun kamu sudah terupgrade, dan kamu bisa mulai Belajar Data Science GRATIS 1 bulan.
Penulis : Salsabila Miftah
Editor : Annissa Widya Davita
Jaringan Fungsi Radial (RBFNs)
Seperti namanya, ini didasarkan pada fungsi aktivasi Radial basis function (RBF). Proses pelatihan model membutuhkan waktu yang sedikit lebih sedikit menggunakan RBFN daripada MLP. Jenis RBFN langsung adalah jaringan saraf umpan maju tiga lapis dengan lapisan input, lapisan tersembunyi yang terdiri dari beberapa unit aktivasi nonlinier RBF, dan lapisan keluaran linier yang bertindak sebagai unit penjumlahan untuk memberikan keluaran akhir.
RBFN digunakan untuk menganalisis harga pasar saham dan juga memperkirakan harga jual di industri Ritel karena kemampuannya untuk bekerja pada data berbasis deret waktu. Aplikasi lain termasuk pengenalan ucapan, analisis deret waktu, pengenalan gambar, pemerataan adaptif, diagnosis medis, dll.